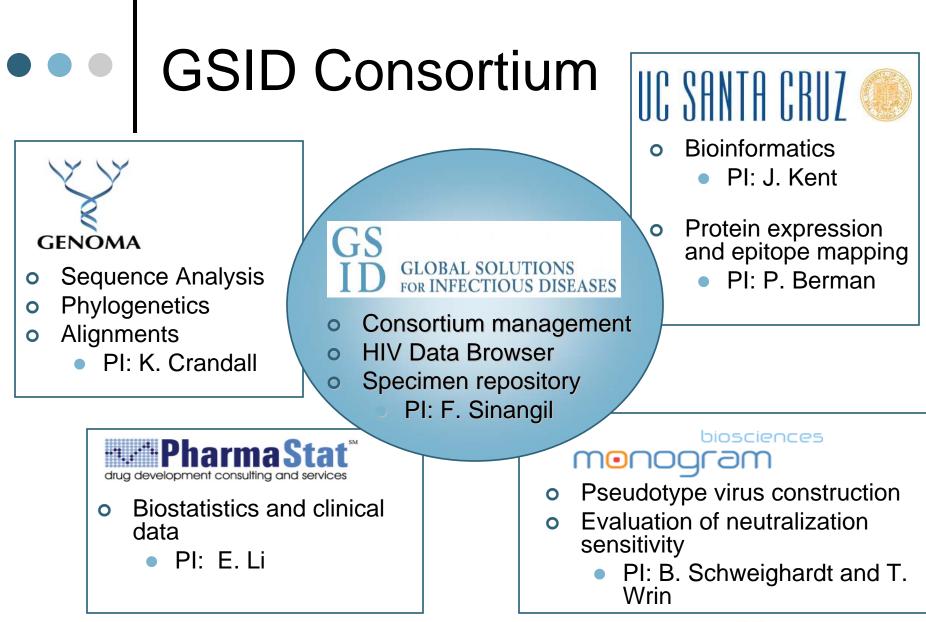
A Path to an HIV Vaccine: GSID Consortium Activities

Faruk Sinangil, PhD 4th Annual CAVD Meeting Miami, FL December 1-4, 2009

Project Goals

- Acquire and disseminate information that will contribute to the development of a safe and effective HIV vaccine
- Establish a consortium to characterize and evaluate antigenic variation of viruses that mediate new infections


Project Objectives

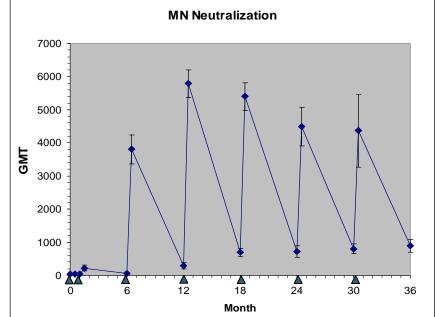
- Establish an AIDSVAX[®] (VAX003 and VAX004)
 Phase III clinical specimen repository
- Establish a web-accessible clinical and sequence database from the AIDSVAX[®] Phase III clinical trials
- Analyze sequence, structure, and phylogeny of gp120 from VAX003 and VAX004

Project Objectives

- Isolate and characterize broadly neutralizing antibodies (bNAbs) from HIV+ plasma (GSID neutralization cohort)
- Characterize and evaluate antigenic variation of viruses that mediate new infections, and identify epitopes on envelope proteins recognized by bNAbs.
- Engineer antigens able to elicit antibodies to the most common polymorphisms at each neutralization site on the envelope glycoprotein

AIDSVAX[®] (VAX003 and VAX004)
 Phase III clinical specimen repository
 has been established

- Specimen repository contains plasma and serum samples, and envelope DNA clones from AIDSVAX[®] VAX003 and VAX004 Phase III clinical trials
- All specimens are available to the HIV vaccine research community



Specimen Repository

Sample # (tubes)	Collection <u>Time Points</u>	Sample #	
· ·		(tubes)	<u>Sample #</u> (tubes)
135,042	34,484	68,966	204,008
29,282 2,852	1,792 2,171	15,320 4,255	44,602 7,107
1,047		600	1,647
	,	1,047 (349 subjects)	

VAX003 (AIDSVAX[®] B/E) Specimens and Immunogenicity Data

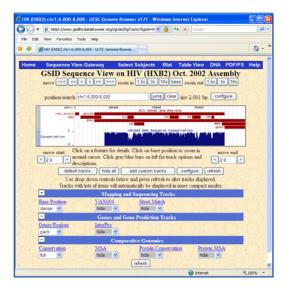
- Uninfected random cohort 125 subjects
 - 116 vaccinees, 9 placebo recipients
 - Immunogenicity tested at all time points (15): Month 0, 0.5, 1.0, 1.5, 6.0, 6.5, 12.0, 12.5, 18, 18.5, 24, 24.5, 30, 30.5 and 36 (immunization time points)
- Infected subjects 211 subjects
 - 106 vaccinees, 105 placebo recipients
 - Tested at last peak (LP) and last trough (LP) time points before infection
- All subjects tested in 5 immunogenicity assays
 - anti-MN/A244gp120, A244 V2, A244 V3, MN Neutralization, A244gp120 CD4 Blocking (in GSID HIV Data Browser)

VAX003 (AIDSVAX[®] B/E) Serum Sample Inventory

Treatment Group	Uninfected Subjects	Infected Subjects
Vaccine	1162	106
Placebo	1155	105
Total	2317	211

- Comparison of immune responses in AIDSVAX[®] B/E and RV135 (D. Montefiori, PI)
 - Magnitude and breadth of HIV-1 neutralization (TZMbl and PBMC assay)
 - Titer and/or affinity of peak vaccine-elicited envspecific binding antibodies (Luminex assay and BIAcore)
 - Longevity of binding and NAb response

A web-accessible database has been established


GSID HIV Data Browser

A Unique Research Tool Providing Access to AIDSVAX Trial Data and Specimens

🕑 🔹 🙋 https://w	ww.gsidhivdatabrows	er.org/ogi-bin/gsid5ubi/hgsic 🎴	Google 😽 🗶 Google	. م
le Edit View Favor	ites Tools Help			
🔅 🎢 HTV Vaccine S	ubject View			<u>a</u>
Home B	<u>lat</u>	Sequence View	Table View	Help
		125 16 16 19	and the same of the	
ubject View	search for a	mother subject	Gol	
Demographic In	formation			
subject ID: GSID4	012			5
gender: Male	~~~	age: 36	risk factor: Low	2
race: White Non-H	ispanic	weight(kg): 68	location: Southwest	2
Vaccine and HI	V Status			
Vaccine/Placebo: 1	Maasha	Dave of infectio	n relative to first injection date: 5	
HIV Status: Infects		Days of infectio	a relative to tirst injection date: 2	+1
Injections: 6				
Paul Paul	Const 140	A Constant	4 C. STR. 4 C. ST	and the Course
Clinical Informa	tion			
P. 4	HIV-1 RNA	CD4		
Estimated Study Day of Infection*		CD4 lls/microliter		
196	5596	650		
217	7567	594		
245	53103	645		1
	< 400	564		
309				

gsidhivdatabrowser.org

R Ven Fari	day Tools		Aug 1 1 1 1 1 1	Party inch	H00256db1 🖌 🎽 🕂 😽 🔀		
GSID Table V	1000	Help					
	WY C		1.1		<u>@</u> •□-₩•	🖓 Page + 🔘 Tools	• @•
lome	Blat	Subje	ct View	ł.	Sequence V	ïew	Н
	configur	e Etter (now	on) di	splay 💈	0 💌 output 🛛 sequence	text	
subject	group	HIV-1 RNA	CD4 s	ex age	race	geography	ris)
GSID4382	Vaccine	30434	707 N	1 30	White/Non-Hispanic	South	Low
GSID4381	Vaccine	147777	635 N	1 38	White/Non-Hispanic	South	High
GSID4380	Vaccine	3837	654 M	1 39	White/Non-Hispanic	South	High
GSID4379	Vaccine	1736	950 N	1 44	White/Non-Hispanic	Midwest	High
GSID4378	Vaccine	338373	443 M	1 31	White/Non-Hispanic	Midwest	High
GSID4377	Vaccine	103923	375 N	1 33	White/Non-Hispanic	Midwest	High
GSID4376	Placebo	2807	518 M	1 31	White/Non-Hispanic	Northeast	High
GSID4375	Vaccine	N/A	N/A M	1 22	White/Non-Hispanic	Northeast	High
GSID4374	Vaccine	6037	595 N	1 36	White/Non-Hispanic	Northeast	High
GSID4373	Vaccine	N/A	N/A M	1 35	White/Non-Hispanic	Northeast	High
GSID4372	Vaccine	1096	856 N	1 32	White/Non-Hispanic	Northeast	High
GSID4371	Placebo	48778	345 N	1 41	White/Non-Hispanic	Northeast	High
GSID4370	Vaccine	11254	387 N	1 38	White/Non-Hispanic	Northeast	High
GSID4369	Vaccine	2082	477 N	1 34	Asian/Pacific Islander	Northeast	High
GSID4368	Vaccine	3812	646 N	1 36	White/Non-Hispanic	Northeast	High
GSID4367	Vaccine	N/A	N/A M	1 33	White/Non-Hispanic	Northeast	High
GSID4366	Vaccine	6495	455 M	1 35	White/Non-Hispanic	Northeast	High
GSID4365	Vaccine	N/A	N/A M		White/Non-Hispanic		High
GSID4364	Placebo	6241	398 N	1 35	Hispanic	Northeast	High
GSID4363	Vaccine	20585	267 N	1 25	White/Non-Hispanic	Northeast	High

	😰 https://www.gadhivdatabrowser.org 👻 🔒 👫 🗶 🖂	p.
Edit	View Favorites Tools Help	
* *	§ GSID Table View	B - 1
Home	Blat Subject View Sequence View	Help
	On this page you can restrict which subjects appear in the main table based on the values in any column. Click the submit button to return to the main Table View page with the current filter settings applied submit clear filter.	
	Filter Controls for Displayed Columns:	
	subject - GSID identification number	
	subject - GSID identification number subject search (including * and ? wildcards)	
	subject search (including * and ? wildcards) Include if any words in search term match.	
	nabject seach (including * and ? widdowds) Include if (rw) ``@ words in search term match. Limit to iteres (so widdow in iter (paster lant to iteres (so widdow iter (paster lant) group - Immunization States props search (nichding * and ? widdrach)	
	ubject search (including * and ? wädendu) Inchede # (wy @ words in search term match. Limit to items (no wädendu) in list [patte list] uplaad list group - Immunization Status	
	nabject seach (including * and ? widdowds) lachded # (wy ¥) words in seach term match. Limit to items (no widdowds) in fit (paste last group - Jamesiastiste States group search (including * and ? widdowds) lachded # (wy ¥) words in seach term match. Limit to items (no widdowds) in fit (paste last)	

Properties of the GSID HIV Data Browser

- Relational database encompassing significant AIDSVAX[®] clinical trial data
- Contains largest collection of full-length gp120 sequences from current time period
- Fully annotated with demographic and clinical information
- Tools developed to analyze sequence data include Protein View, comparative genomics and positive selection
- Immunogenicity data for infected and subset of uninfected subjects in AIDSVAX[®] trials (VAX003 and VAX004) to be available by Q1 2010

Sequence, structure and phylogeny analyses of gp120 from VAX003 and VAX004 completed

- Pérez-Losada M, Posada D, Arenas M, Jobes DV, Sinangil F, Berman PW, Crandall KA. Ethnic differences in the adaptation rate of HIV gp120 from a vaccine trial. Retrovirology. 2009 Jul 15;6:67.
- Pérez-Losada M, Jobes DV, Sinangil F, Crandall KA, Posada D, Berman PW. Phylodynamics of HIV-1 from a Phase III AIDS vaccine trial in North America. Mol Biol Evol. 2009 Oct 28. [Epub ahead of print]
- Pérez-Losada M, Jobes DV, Crandall KA, Posada D, Sinangil F, Berman PW. Dynamics and phylogenetic analysis of viruses mediating new infections in VAX003, a phase 3 HIV vaccine trial in Thailand. [in preparation]

GSID Consortium Strategy for Development of an Effective HIV Vaccine

- Define the sequences and range of virus variation among viruses responsible for new infections
- Assess the sensitivity/resistance of viruses to neutralization by broadly neutralizing antibodies (bNAbs) in HIV+ patient sera
- Identify epitopes on envelope proteins recognized by bNAbs in HIV+ sera
- Identify the naturally occurring polymorphisms that occur at these epitopes and their effect on virus neutralization
- Purify populations of broadly neutralizing antibodies from HIV+ plasma and define mechanism of action (specificity, affinity/avidity)
- Engineer antigens and multivalent vaccines able to elicit antibodies to the most common polymorphisms at each neutralizing site on the envelope glycoprotein

Isolation and characterization of broadly neutralizing antibodies (bNAbs) from HIV+ plasma: GSID neutralization cohort

Inclusion criteria

- HIV-positive for at least one year prior to screening
- Has never received ART
- Screening
 - Started May 12, 2009
 - 17 subjects screened for bNAbs against a panel of 24 viruses (Tier 1, 2, and 3)

			-	_				_	_				riza							s fi	n	m
	HIV+ sera (GSID neutralization cohort)																					
	GSID 1	GSID 2	GSID 3	GSID 4	GSID 5	GSID 6	GSID 7	GSID 8	GSID 9	GSID 10	GSID 11	GSID 12	GSID 13	GSID 14	GSID 15	GSID 16	GSID 17	Z1679	Z1641	N16	Z1653	Z23
SF162	5611	11276	3019	9369	76894	5529	51234	1620	1266	2487	1,429	9,483	56,771	2,780	18,938	9,275	14,287	4099	3338	4720	137	22535
1196	3404	256	90	126	161	141	265	189	63	59	169	105	550	86	626	136	927	70	41	142	25	413
TRO	2556	81	109	46	49	89	167	89	51	54	89	119	80	61	369	44	129	215	<20	63	42	297
JRFL BG1168	4761 224	72 43	145 44	31 24	40 38	56 37	122 47	974 37	67 58	32 <20	47 35	47 30	122 <20	876 69	335 170	55 26	180 136	1011 76	<20 <20	34 21	<20 21	514 120
0H0692	720	40 51	44 35	24 26	27	60	47 34	37 39	38	30	- 35 - 42	35	<20	36	147	20 48	90	36	<20	24	31	137
REJO	1206	137	145	66	59	126	369	148	224	39	34	88	770	302	1,029	87	196	64	25	62	34	515
M-SC-B-006	382	27	25	21	<20	34	39	81	<20	21	32	59	59	45	128	<20	109	26	<20	<20	<20	<100
APV-16	1101	68	56	36	46	66	100	61	45	56	87	112	144	39	80	34	223	97	38	90	51	572
M-Chronic- B-013	381	42	45	42	34	57	92	51	56	43	49	49	75	40	639	35	75	32	28	23	21	189
PV0	2328	51	42	37	72	65	84	77	32	64	50	95	69	78	332	27	125	126	32	28	27	439
M-A-002	291	23	47	29	24	32	72	55	35	28	59	42	88	46	35	28	83	<20	<20	22	<20	181
M-A-006	952	28	27	24	22	38	54	40	45	42	60	131	46	82	105	60	104	52	<20	<20	22	230
M-C-003	40	24	24	25	<20	31	32	28	21	22	47	98	38	41	46	38	111	75	23	23	<20	<100
M-C-020	1075	45	34	32	<20	43	72	39	37	31	66	111	54	71	228	61	99	<20	<20	<20	35	<100
M-D-006 M-D-009	2504 1465	70 224	37 315	28 278	35 126	50 222	60 712	43 382	31 206	<20 140	38 124	20 83	20 895	37 144	314 905	20 131	78 209	102 135	<20 39	<20 135	21 52	238 476
94UG103	785	48	34	32	36	69	81	57	51	31	70	43	72	61	433	56	135	<20	<20	30	31	121
92BR020	1241	107	103	121	219	111	267	108	69	44	140	194	603	67	292	165	185	194	<20	65	<20	272
93IN905	986	109	449	78	116	124	153	85	104	141	361	658	119	122	239	133	287	301	31	91	27	326
M-C-026	507	43	54	55	66	91	219	72	175	38	113	300	430	331	316	21	112	36	40	55	41	277
92TH021	408	69	127	53	44	109	95	55	80	44	41	449	70	103	1,406	50	138	47	<20	57	31	255
JRCSF	5933	272	65	54	59	100	139	116	137	<20	46	95	408	193	788	45	178	115	<20	177	25	402
JRCSF	4995	220	65	43	54	84	137	133	120	<20	69	120	590	293	1,045	65	201	114	<20	172	25	385
NL43 NL43	2131 1947	3114 2126	521 511	433 392	271 203	844 888	1394 1390	464 931	385 554	97 93	232 345	1,852 2,448	7,649 6,925	486 847	1,182 1,733	1,750 2,473	1,361 2,217	1021 867	120 100	769 591	96 86	3598 3172
aMLV	<20	<20	<20	<20	<203	<20	<20	<20	<20	-20	545 64	2,440 <20	<20	25	23	2,473	28	<20	<20	<20	<20	<100
			-20	-20	20	20	-20	-20	-20	-20			~20 n.eete/n									

M = MGRM in virus IDs

All human sera/plasmas were treated to minimize non-specific backgrounds

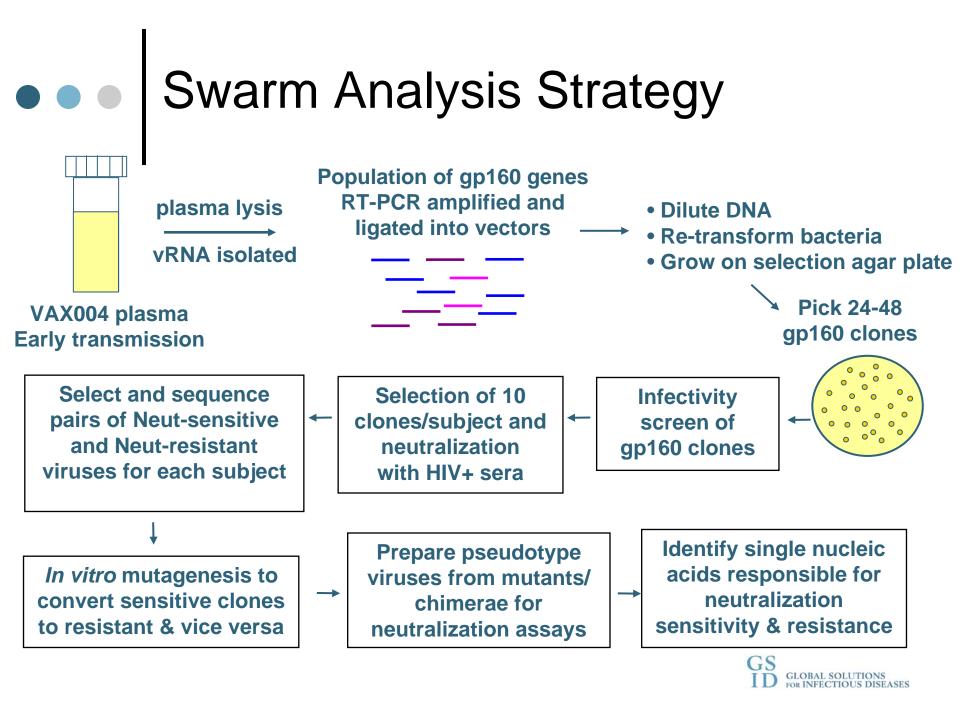
= extra blood collected from these subjects

Characterize and evaluate antigenic variation of viruses that mediate new infection and identify epitopes on envelope proteins recognized by bNAbs (Berman Lab UCSC)

- Analyzed sequence data from VAX003 and VAX004 (GSID HIV Data Browser) for the purpose of new vaccine antigen development
- Collaborated with Keith Crandall (BYU) in a position by position analysis of amino acid sequence variation within gp120 from clade B and E viruses
- Analyzed the physical characteristics of the envelopes from each cohort to better understand the breadth of virus variation that must be addressed by a successful HIV vaccine
- Calculated new amino acid consensus sequences for clade B and E viruses using a hidden Markov model to account for insertions and deletions
- Identified viruses closest to the consensus sequence and most distant from the consensus sequence for antigen production and immunization studies

Defining VAX004 Sequence Variation in New Infections: Virus Selection for Panel of New Immunogens

	Specimens
<u>Characteristic</u>	<u>Analyzed</u>
Randomly selected	28
Close to consensus sequence	10
Distant from consensus sequence	10
Early / acute infections	10
High virus loads	10
Unusual disulfide structures	5
Long or short V regions	5


Total: 78

Characterize and evaluate antigenic variation of viruses that mediate new infection and identify epitopes on envelope proteins recognized by bNAbs (Berman Lab UCSC)

- Developed a new strategy (swarm analysis) that makes use of the swarm of naturally occurring virus variants within each individual to understand the molecular basis of susceptibility and resistance to bNAbs
- The new strategy depends on viruses from recent infections and is based on "clonal analysis" technology developed at Monogram Biosciences

Characterize and evaluate antigenic variation of viruses that mediate new infection and identify epitopes on envelope proteins recognized by bNAbs (Berman Lab UCSC)

- Mapped 3 novel mutations in clinical isolates that appear to induce conformational changes that result in improved exposure of epitopes recognized by bNAbs
 - Envelope genes with such mutations may represent an important source of new vaccine antigens.
 - Monomeric and oligomeric forms of these proteins have been produced and rabbit immunization studies have begun

O'Rourke SM, Schweighardt B, Scott WG, Wrin T, Fonseca DP, Sinangil F, Berman PW. Novel ring structure in the gp41 trimer of human immunodeficiency virus type 1 that modulates sensitivity and resistance to broadly neutralizing antibodies. J Virol. 2009 Aug;83(15):7728-38.

Acknowledgements

• Bill and Melinda Gates Foundation

o GSID

- Don Francis
- Carter Lee
- Michael Peterson
- Keith Higgins
- Evie Zaharias
- Melissa Daoust

• Genoma LLC

- Keith Crandall
- Marcos Pérez-Losada
- David Posada

- UC Santa Cruz -Bioinformatics
 - Jim Kent
 - Fan Hsu
 - Ann Zweig
 - Robert Kuhn
 - Galt Barber
 - Erich Weiler

- UC Santa Cruz Biomolecular Engineering
 - Phil Berman
 - Sarah O'Rourke
 - Dora Fonseca
 - Bin Yu
- PharmaStat
 - Elizabeth Li
- Monogram Biosciences
 - Becky Schweighardt
 - Terri Wrin
 - Julie Goss

- Conant Medical
 - Marcus Conant
 - Christopher Eden
 - Joseph Robinson