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ABSTRACT 
The worldwide adoption of mobile devices presents an 
opportunity to build mobile systems to support health 
workers in low-resource settings. This paper presents an in-
depth field evaluation of a mobile system that uses a 
smartphone’s built-in camera and computer vision to 
capture and analyze diagnostic tests for infectious diseases. 
We describe how health workers integrate the system into 
their daily clinical workflow and detail important 
differences in system usage between small clinics and large 
hospitals that could inform the design of future mobile 
health systems. We also describe a variety of strategies that 
health workers developed to overcome poor network 
connectivity and transmit data to a central database. Finally, 
we show strong agreement between our system’s computed 
diagnoses and trained health workers’ visual diagnoses, 
which suggests that our system could aid disease diagnosis 
in a variety of scenarios. Our findings will help to guide 
ministries of health and other stakeholders working to 
deploy mobile health systems in similar environments. 
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INTRODUCTION 
The rapid increase in mobile device penetration throughout 
the world is providing an opportunity for mobile systems to 
play an important role in the delivery of health and 
information services to people in developing countries. 
Mobile devices are portable, battery-powered, relatively 
low-cost and can connect to the Internet via cellular 
networks. These properties make them more suitable for 
deployment in low-resource environments than traditional 
desktop computing platforms. As a result, the emerging 
research area of mobile health has evolved to study the 

design and use of mobile systems for healthcare delivery in 
low-resource settings. Categories of research include 
informing people about health issues [5], improving 
adherence to medical protocols [6], providing remote 
consultation [13] and collecting data in survey format [11].  

In addition, a variety of emerging technologies aim to 
transform a mobile device into a portable medical platform 
using sensors built-in or attached to the device. SpiroSmart 
[9] uses the built-in microphone to measure lung function, 
CellScope [20] uses a lens attachment to turn the camera 
into a microscope, while NETRA [16] attaches an optical 
probe to the camera to detect eye anomalies. Although these 
sensor-based systems may have the potential to transform 
healthcare in low-resource settings, the majority of them are 
yet to be evaluated with health workers in the field. As a 
result, little is known about the challenges and issues that 
might arise when health workers attempt to integrate mobile 
sensor-based systems into their patient care routines.  

Our work extends the state-of-the-art by exploring the user 
interaction and deployment challenges that arise when 
health workers in low-resource settings integrate a mobile 
camera-based system into their clinical workflow. We 
designed a system that uses a smartphone’s built-in camera 
and computer vision to capture, analyze and report 
diagnostic tests for infectious diseases (see Figure 1). 
Previous research [3] describes an initial implementation of 
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Figure 1: A health worker uses our system in a rural clinic 

in Zimbabwe to analyze diagnostic tests for malaria. 
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the system’s image analysis algorithms. In this paper, we 
provide an extensive field evaluation of the system with 
sixty health workers at five hospitals and clinics in 
Zimbabwe. This is the first time the system has been 
evaluated with real users in low-resource settings. We 
explore how health workers are able to integrate the system 
into their daily patient care routines, both at small, rural 
clinics and at large, urban hospitals, and we expose a 
variety of issues that are generally applicable to a range of 
mobile sensor-based systems (such as data collection issues, 
user errors, infrastructure challenges, etc.). 

Our field evaluation focuses on three important research 
questions: (i) the impact of the mobile system on health 
workers’ patient care routines, (ii) the impact of poor 
infrastructure on system usage and data collection, and (iii) 
the quality of the mobile system’s automatically computed 
diagnoses. Our findings show that health workers were able 
to integrate the system into their clinical workflow and 
successfully collect extensive amounts of test data after 
only sixty minutes of training. Furthermore, health workers 
used our system to capture and analyze diagnostic tests 
consistently over an eight-week period. In addition, health 
workers developed a variety of strategies to overcome poor 
network connectivity and transmit data to a centralized 
database. Finally, we show strong agreement between the 
system’s computed diagnoses and the visual diagnoses 
provided by well-trained health workers, which suggests 
that the system could assist with disease diagnosis in a 
variety of scenarios. Taken together, our findings will help 
ministries of health and other stakeholders to assess the 
viability and acceptability of deploying mobile sensor-
based systems to assist health workers in the field. In 
addition, our insights will guide future researchers working 
to deploy mobile health systems in similar environments. 

BACKGROUND AND RELATED WORK 

Rapid Diagnostic Tests for Low-Resource Settings 
Health workers in low-resource settings often lack access to 
convenient, affordable and usable diagnostic technologies 
that could help them to quickly diagnose and treat 
infectious diseases. To address this challenge, low-cost, 
commercially available rapid diagnostic tests (see Figure 2) 
have been developed and are now routinely used throughout 
the world to diagnose a variety of common diseases [12]. 
For example, the 2013 World Malaria Report [21] showed 
that a total of 205 million rapid diagnostic tests for malaria 
were manufactured and sold globally in 2012.  

Although the potential benefits of these new diagnostic 
technologies are immense, little attention has been paid to 

the challenges faced by the health workers responsible for 
administering tests and interpreting their results. To run a 
test, a health worker places a drop of blood on the test, 
waits a recommended amount of time (usually 10-20 
minutes) and then interprets a series of colored control and 
test lines (see Figure 2) to determine the result. Although 
interpreting tests may appear to be simple, there are many 
challenges involved in reading the tests by eye, particularly 
for health workers in low-resource settings. Human 
interpretation is subjective and health workers often lack 
confidence in their ability to read test results correctly [18]. 
The variety of tests available is also expanding rapidly [12] 
and the numbers and positions of result lines vary across 
diseases and test brands, which increases the potential for 
human error. Researchers are also in the process of 
developing more complex tests whose results will require 
quantification [1] or time-sensitive analysis [4] that will be 
extremely difficult or impossible to analyze by eye. Finally, 
health workers in low-resource settings may have poor 
eyesight that could impair their ability to interpret the test.  

In our work, we address these challenges by building a 
mobile system to objectively interpret the tests. Analysis of 
tests can become a standardized, auditable and adjustable 
process that can be changed without retraining users. 
Commodity smartphones can analyze a variety of tests, 
negating the need for specialized reader devices, and new 
tests can be added to the system as they become available. 
Furthermore, a mobile system can also collect and transmit 
relevant patient and disease data to a central database. 
Providing governments and epidemiologists with timely, 
accurate statistics regarding the diseases detected could aid 
outbreak detection, supply chain management, evidence-
based decision-making, health system evaluation and global 
disease surveillance and control efforts. 

Mobile Health Systems for Low-Resource Settings 
A range of prior research highlights the potential for mobile 
systems to improve healthcare in low-resource settings. 
Research areas include informing people about health 
issues [5] and improving adherence to medical protocols 
[6]. Several mobile data collection systems have also been 
widely deployed [5, 8, 11]. However, these deployments 
focus on manually collecting textual data in survey format 
rather than processing rich data collected from sensors. 
Telemedicine systems allow users to capture images in the 
field and transmit them for remote analysis, either by a 
human expert [13], or by complex image processing 
algorithms running in a data center [17]. However, many 
health facilities in low-resource settings lack the reliable 
network connection required to transmit high-resolution 
images for off-site analysis. In addition, the expert 
analyzing the images is likely to be a busy medical 
professional and it may take days to send a result back to 
the health worker. These challenges suggest that it may be 
beneficial to perform any necessary computation locally on 
the device rather than transmitting it for off-site analysis.  

 
Figure 2: A low-cost rapid diagnostic test for malaria. 
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As discussed in the previous section, innovative mobile 
health systems have also recently been developed that aim 
to process data collected from sensors built-in or attached to 
the device [9, 18, 22]. Although these systems have the 
potential to transform healthcare delivery in low-resource 
settings, they are yet to be evaluated with real users in the 
field, and little is known about the issues that might arise 
when these systems are integrated into the clinical 
workflow. A notable exception by Chaudri et al. [2] uses an 
external temperature sensor attached to a smartphone to 
monitor the pasteurization of human breast milk. The 
system was evaluated in two South African hospitals with 
promising preliminary results, although the study did not 
consider how the system may be used in small, rural clinics. 

Mobile Systems for Analyzing Diagnostic Tests 
In addition to our work, several recent mobile systems also 
target the capture and analysis of rapid diagnostic tests. 
Matthews et al. [14] describe a mobile system that uses 
image processing to automatically interpret a paper-based 
test for dengue fever. However, the algorithm has not yet 
been fully evaluated and only targets a single, special-
purpose test for dengue rather than a range of tests for a 
variety of diseases. Mudanyali et al. [15] developed a 
smartphone-based diagnostic test reader that controls the 
environment in which images of tests using lighting. By 
contrast, our system uses only the device’s built-in flash to 
light the image, which is advantageous since requiring 
additional battery-powered parts increases the likelihood 
that one of the parts will run out of charge and render the 
system non-functional.  

The FIO Corporation [7] markets a smartphone-based 
diagnostic test reader capable of imaging a variety of tests. 
However, the device is enclosed in a specialized container, 
which limits it to reading diagnostic tests and prevents it 
from becoming a general-purpose medical platform. In 
addition, users must purchase the company's proprietary 
devices and cloud-based services. By contrast, our system is 
open-source, allows users to add their own tests to the 
system, and works with a variety of mobile devices and 
server solutions. Lastly, to the best of our knowledge, FIO’s 
system is the only smartphone-based diagnostic test reader 
that has been evaluated in the field [19]. However, the study 
focused solely on the accuracy of the system’s medical 
diagnoses and did not consider any data collection, usability 
or infrastructure challenges faced by users in the field.  

SYSTEM DESIGN 
Our work extends the state-of-the-art by exploring the user 
interaction and deployment challenges that arise when 
health workers in low-resource settings integrate a mobile 
camera-based system into their clinical workflow. 
Specifically, we designed and built a smartphone system 
that uses the device’s built-in camera to capture and analyze 
rapid diagnostic tests for infectious diseases. The rest of this 
section describes our design principles, user interaction and 
system workflow, and implementation details.  

Usage Scenario and Design Principles 
We target the following usage scenario: a health worker in a 
rural clinic has been issued a mobile device to assist with 
clinical tasks. The health worker enters a patient exam room 
to assess a patient. After spending time interacting with the 
patient and using the device to collect patient data, the 
health worker decides to perform a diagnostic test for 
malaria. (S)he obtains a blood sample from the patient and 
administers a rapid diagnostic test for malaria. Then, (s)he 
uses the device’s built-in camera to capture an image of the 
test. The system processes the image, displays the test result 
on the screen, and transmits the data to a database if and 
when there is sufficient connectivity. Finally, based on the 
test result, the health worker recommends the appropriate 
treatment or selects another test to run.  

In addition to being appropriate for our target problem of 
interpreting diagnostic tests, many of our design principles 
are also applicable to a range of other mobile sensor-based 
systems. For example, similar usage scenarios might apply 
to capturing images for cell-phone microscopy [16] or 
sound to analyze lung function [9].  

Commercially available devices 
Requiring users to import, configure and maintain custom 
hardware systems may present a significant barrier for 
many users in low-resource settings. Therefore, our system 
runs on commercially available Android devices and only 
uses sensors that come built into these devices. The system 
does not use any additional hardware or specialized reader 
device and analyzes rapid diagnostic tests using only 
images captured from the built-in camera. We have tested 
the system using a variety of smartphones with 5 mega-
pixel cameras and above. The variety of Android devices 
available in low-resource settings will allow users with 
varying needs and budgets to choose devices that best fit 
their requirements. In addition, smartphones are multi-
purpose devices that can also provide utility beyond 
diagnostics (such as voice and text communications, patient 
management or data reporting).  

Local computation 
Prior research explores the idea of transmitting images for 
remote analysis [13, 19]. However, many low-resource 
settings lack sufficient Internet connectivity to reliably 
transmit high-resolution images. Thus, our system performs 
all of the computation and image processing on the device, 
which allows the system to be fully functional in the 
absence of a network connection. 

Asynchronous transmission 
In many low-resource settings, the quality of the network 
connection might vary with network traffic, time of day and 
power outages. Thus, our system supports asynchronous 
data transmission in which collected images and data are 
stored locally on the device until a network connection or 
sufficient bandwidth becomes available for transmission.  
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Data collection 
In addition to capturing and processing images, our system 
allows users to collect and report data (including text, 
barcodes, GPS data, etc.) about the patients seen and 
diseases detected. Rather than building a new data 
collection platform, we integrated the image processing 
components of the system with CommCare [5], a widely 
used data collection platform based on Open Data Kit [11]. 

Easily configurable 
We wanted to make it easy for test manufacturers and 
clinical experts to add new rapid diagnostic tests to the 
system and to control the sensitivity of the image-
processing algorithm for their specific test. To add a new 
test, a clinical expert creates a simple text file, called a test 
description file, which specifies the size and location of the 
regions that contain the test results. The test description file 
is uploaded to the device and used to configure the mobile 
system for use by health workers in the field. The health 
workers will not adjust the system parameters. Instead, 
health workers will simply use the smartphone’s built-in 
camera to capture images of tests that have previously been 
added to the system by clinical experts. A typical test 
description file consists of about ten lines of text and may 
be created using any text editor or using a graphical web 
tool that we developed. Thus far, clinical experts in the 
laboratory have created and tested description files a variety 
of rapid diagnostic tests for different diseases and test 
brands, including tests for malaria, HIV and syphilis [3]. 

Interaction Design and System Workflow 
A prior paper describes the system architecture and image 
processing algorithms in detail [3]. Here, we provide an 
overview of the steps required for a health worker to 
interact with the system to capture and process a diagnostic 
test. A health worker begins by launching the system and 
using the mobile application to record any relevant patient 
data (such as age, gender, etc.) They then select the type of 
diagnostic test from a menu on the screen that contains a 
list of all the tests that have been added to the system. 
Selecting a test automatically launches the Android camera 
application, which allows users to take (and, if necessary, 
re-take) and image of the relevant diagnostic test. When the 
user is happy with the image that they captured, they press a 
button to save and process the image.  

The next step in the workflow is to align the captured 
image, which involves separating the part of the image that 
contains the diagnostic test cartridge from the background. 
After aligning the image, the system displays the test on the 
screen, and provides users with an opportunity to re-take 
the image should the test appear to be misaligned. If the test 
has aligned correctly, the user presses a button to compute 
the diagnosis. The system uses test description file that 
corresponds to the chosen diagnostic test to locate and 
process each region on the test that the clinical expert 
specified as showing a result. For each region, the system 
uses a thresholding algorithm (described in detail in [3]) to 
determine if a line is present in that region. Finally, the 

system uses the combination of detected lines to determine 
the final test result. After the result has been computed, it is 
displayed on the screen with an image that shows the user 
the results of processing so that they can verify the 
diagnosis. Figure 3 shows the system’s user interface for a 
processed malaria test with a positive result. After checking 
the result, the user saves and exits the application. The 
system then stores all of the data associated with the 
captured test locally on the smartphone, and transmits this 
data, along with an image of the captured test, to a central 
database if and when a network connection is available.  

FIELD EVALUATION 
We conducted an eight-week field study with sixty users at 
five hospitals and clinics in Zimbabwe to explore the 
impact that using our mobile camera-based system had on 
health workers’ patient care routines. Although we have 
extensively tested the system with rapid diagnostic tests for 
multiple diseases in the laboratory, including tests for HIV, 
syphilis and flu [3], our field evaluation in Zimbabwe 
targeted only diagnostic tests for malaria. The practical 
constraints of integrating a new system into government 
public health facilities limited our deployment to diagnostic 
tests that are already routinely purchased and distributed by 
the Ministry of Health and Child Care. Rapid diagnostic 
tests for malaria are available at all hospitals and clinics in 
Zimbabwe and are used to test and treat patients in a variety 
of clinical departments, including the maternal and child 
health, outpatient, opportunistic infections and maternity 
departments. Health workers in Zimbabwe have been 
trained to administer rapid diagnostic tests for malaria and 
use them on a daily basis, and the Ministry of Health 
allowed us to analyze these tests. We acknowledge that 
only evaluating the mobile system with malaria tests is a 
limitation of our study. However, since the process of 
administering rapid diagnostic tests for other diseases is the 
same as administering tests for malaria, the workflow to 
analyze tests for other diseases would be identical. 

 
Figure 3: The mobile system’s user interface, showing a 

processed diagnostic test for malaria with a positive result. 
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Research Questions 
This study was the first time that the system has been 
evaluated with health workers in low-resource settings. We 
formalize our study into three research questions: 

Q1: To what extent are health workers in low-resource 
settings willing and able to integrate a mobile camera-based 
system into their daily patient care routine?  
Although many health workers in Zimbabwe own basic 
mobile phones, the majority have never used a touchscreen 
device. We wanted to assess how easily health workers 
learned to interact with these new devices, how easily 
groups of health workers within a clinic were able to use a 
single device as a shared resource, and how system usage 
might vary across health facilities of different sizes. Finally, 
we wanted to explore the range of user errors that occurred 
when health workers used the system in the field.  

Q2: What infrastructure challenges are faced by health 
facilities using the system and what strategies might be 
used to overcome these challenges? 
The rapid growth of mobile networks in developing regions 
has led to the widespread deployment of 2G/3G networks. 
However, network data speeds are usually erratic and 
availability can be intermittent. We wanted to examine how 
network connectivity varied at different sites and see if the 
sites possessed sufficient bandwidth to transmit collected 
data and images. In addition, we were interested in what 
strategies were used to keep the devices safe and charged.  

Q3: To what extent do the automatically processed 
diagnoses computed by the mobile system agree with the 
visual diagnoses made by trained health workers? 
One of our long-term goals is for the system to help health 
workers who may not have much medical background to 
correctly diagnose patients. However, since this study is the 
first field evaluation of the system, we did not want to 
affect the standard of patient care at this stage. Thus, health 
workers who participated in our study were trained nurses 
whose interpretation of tests is currently used to guide 
patient care. All patient treatment was based on their visual 
diagnoses collected prior to image processing. This enabled 
a blinded comparison of the visual diagnoses and the 
system diagnoses to assess if the system might be used to 
direct patient care in the future. 

Study Sites  
Following approval of the study protocols by the IRB, 
we identified five clinical study sites in the Manicaland 
province: the Mutare provincial hospital, the Hauna and 
Nyanga district hospitals, and the Tombo and Zindi rural 
health centers. We selected sites that typically have a high 
prevalence of malaria testing and deliberately targeted 
facilities that ranged in size from large urban hospitals to 
small rural clinics to explore how system usage varied at 
different levels of the healthcare hierarchy. Mutare hospital, 
located in Zimbabwe’s third largest city, is the biggest 
hospital in Manicaland province. Nyanga district hospital is 
in a town roughly 100km from Mutare. Hauna hospital is 
located in a substantially more rural and difficult to access 

valley roughly 100km from Nyanga. Finally, the Tombo 
and Zindi clinics are in small, rural villages roughly 80km 
from Nyanga and 60km from Hauna respectively.   

Participants 
We recruited 60 health workers (47 female) across the five 
study sites (see Table 1). Participation was limited to 
trained health workers who conduct malaria diagnostic tests 
regularly as part of their job. Participants ranged in age 
from 24 to 64 years (M = 35) and had between 1 and 42 
years (M = 6) of experience employed as health workers. 
Most participants owned basic mobile phones, but 32 had 
never used a touchscreen device and another 15 had less 
than six months experience using a touchscreen device.   

Apparatus 
We configured our mobile application to collect patient data 
and capture diagnostic tests for malaria. Since our study 
deals with sensitive personal health information, all the data 
we collected was anonymized. We recorded the patient’s 
gender, age, location, test type, date, time, the health 
worker’s visual diagnosis and the system’s computed 
diagnosis. The application was also instrumented to record 
the times at which the test started and ended and the time at 
which the captured data was transmitted to the server.  

We deployed the mobile system on Samsung Galaxy 
XCover 2 Android devices because they were readily 
available and moderately priced in Zimbabwe. The XCover 
2 has a 1 GHz dual core processor, a 5 mega-pixel built-in 
camera, a 4-inch capacitive touchscreen and a ruggedized 
plastic cover to protect the device from dust and moisture. 
Each device was loaded with a 2GB external SD card and a 
local SIM card with a 300MB prepaid data bundle. As 
shown in Table 1, the provincial and district hospitals 
received four devices each, with one device placed in each 
of the clinical departments that perform the most malaria 
diagnostic tests (the maternal and child health department, 
the outpatient department, the maternity department and the 
opportunistic infections department). Since rural clinics 
typically employ fewer health workers than hospitals, each 
clinic was issued with one or two devices to cover their 
patient load. In total, we deployed 15 devices across five 
study sites. Each device was accompanied by a simple 
plastic stand (see Figure 4) designed to provide stability and 
a fixed focal length for the device’s camera. In addition, we 
distributed printed user manuals to provide support and 
guidance for participants in the absence of the researchers.  

Table 1: Summary of study sites, participants and devices. 

Study site No. of Participants No. of Devices 
Mutare hospital 27 4 
Nyanga hospital 17 4 
Hauna hospital 11 4 
Zindi clinic 3 2 
Tombo clinic 2 1 
All sites 60 15 
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Procedure  

Preliminary Site Assessment 
Before beginning the study, we visited Zimbabwe to assess 
the selected study sites, understand the health workers’ 
current routines, and gain insight into how a mobile system 
might be successfully integrated into the clinical workflow. 
We also tested the network connectivity and data 
transmission rates at each site.  

Adding Diagnostic Tests to the System 
During our site assessment, we obtained the details of the 
three brands of malaria tests currently in use at the sites. 
Following this, a clinical expert at Global Solutions for 
Infectious Diseases (San Francisco, USA) [10] created the 
test description files to add the malaria tests to the system. 
Encouragingly, creating new test description files was 
relatively quick, taking roughly 30 minutes per test. 
Rigorously testing the system parameters for each test took 
longer, typically several days, since it was necessary to 
prepare and administer series’ of tests with differing 
dilutions of malaria infected blood under a variety of 
lighting conditions, before empirically determining the 
parameters that resulted in the optimal sensitivity and 
specificity. To make the optimization phase easier, we 
created a version of the system that could batch process a 
variety of different test images and parameters at once, 
which allowed the clinical expert to more quickly narrow in 
on the optimal algorithm parameters for each test. 

Training and Deployment 
After adding the malaria tests to the system, we returned to 
Zimbabwe and conducted participant training sessions at 
each study site. Each training session lasted approximately 
60 minutes and began by demonstrating the system to a 
group of participants. Participants were then divided into 
pairs and given time to read user manuals, ask questions 
and practice capturing and reporting diagnostic test data. 
The amount of practice that participants required varied 
depending on their familiarity with technology, although all 
participants mastered the system within the training session. 
During each session, we explained that this was the first 
time the mobile system was being field tested and that all 
patient care should continue to be based on participants’ 
visual diagnoses. At the end of each session we collected 
demographic data regarding each participant’s age, work 
experience and familiarity with technology.  

After the training sessions, participants were asked to 
integrate the system into their daily patient care routine and 
to capture and transmit data every time that they performed 
a malaria test. At the hospitals, we explained that each of 
the main clinical departments that conducted malaria tests 
would receive one device and that participants working in 
these departments would share the device accordingly. We 
conducted follow-up visits at each site one week and six 
weeks after the training sessions to assess how easily 
participants were able to integrate the technology into their 
workflow. During these visits, we observed participants 
using the system and conducted semi-structured interviews 
to collect data about participants’ opinions and experiences. 

RESULTS AND DISCUSSION 

Q1: Integrating the System into the Clinical Workflow 
Our first research question explores the extent to which 
participants were able to integrate the system into their 
clinical workflow, including how they used the system and 
what errors they made when interacting with the system.  

Analyzing System Usage and Data Collection 
Health workers reacted positively to the introduction of the 
mobile system into their daily clinical workflow. Most 
participants were eager to learn the new technology and 
excited that the system represented progress for 
Zimbabwe’s national health system. Figure 5 shows the 
number of tests captured by each site. In total, participants 
captured and transmitted 1828 malaria tests over the two-
month study period. The median time that it took to capture 
and process a test and record patient data was 1.5 minutes 
(ranging from an average of 2.5 minutes at Mutare to 1.3 
minutes at Nyanga).  

In addition, a large proportion of participants immediately 
identified the potential for the system to reduce their 
paperwork burden by automatically generating aggregated 
monthly reports. Participants at the small clinics told us that 
they were currently responsible for manually maintaining a 
large number of paper-based patient registers, several of 
which required the same data to be repeated and most of 
which required a written monthly report. They were eager 
to show us which registers could be replaced by collecting 
data using the mobile system, and they requested that the 
system be extended to enable them to collect a broader 
range of health information beyond diagnostic test data.   

 
Figure 4: A simple plastic stand holds the mobile device in a 

convenient position above the diagnostic test. 

 
Figure 5: Total number of malaria diagnostic tests 

captured by each study site. 
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Figure 6 shows the proportion of each site’s captured tests 
that were collected during each week of the study. 
Encouragingly, participants used the system regularly to 
collect data for the duration of the study, which suggests 
that they were generally able to integrate the system into 
their daily clinical routines. In addition, several participants 
mentioned that patients responded favorably to the new 
system, believing that it was important for their diagnostic 
test data to be reported directly to the Ministry of Health.  

Somewhat surprisingly Zindi, one of the small rural clinics, 
captured the largest number of tests (see Figure 5). This 
could be explained by several factors. First, Zindi is located 
in the most malaria endemic region of all the study sites and 
typically performs a large number of diagnostic tests during 
the malaria season. In addition, small clinics are usually a 
patient’s first point of contact with the health system and 
represent an ideal place at which to quickly diagnose and 
treat malaria. Finally, we found that the health workers at 
Zindi set up a dedicated desk that they used exclusively for 
performing malaria tests. Placing the mobile device on the 
same desk made it easy for them to integrate the system 
into their current workflow and capture tests as necessary.  

By contrast, Mutare, the largest hospital in the study, 
captured the smallest number of tests (see Figure 5). There 
are several possible explanations for this. First, since 
visiting the hospital is substantially more expensive than 
visiting a clinic, many patients only visit the hospital if they 
are referred there by a clinic. In these cases, patients often 
already received a diagnostic test at the clinic and there is 
no need to perform another test at the hospital. In addition, 
the clinical departments at Mutare hospital are much larger 
than those at the district hospitals and have many patient 
exam rooms, and it was challenging for participants to 
coordinate usage of a single device across multiple rooms. 
Several participants explained that sometimes when they 
needed to use the device, it was already being used in 
another room. Thus, for large hospitals, a better deployment 
model may be to provide one device per exam room.  

We also discovered that the large number of patients at the 
hospital increased participants’ fear that the devices would 
get stolen if left in a room unattended. As a result, 
participants frequently locked the device in a cabinet when 
they left the room. Other participants were then unable to 

access the device until they found the health worker with 
the key. During a follow-up visit, we explained to 
participants that it would be better to use the system and 
risk theft of the device than keep it locked away. This 
encouragement may have been responsible for the larger 
number of tests collected in Mutare in the second week of 
the study (see Figure 6) although the number of tests 
decreased again in subsequent weeks. At the end of the 
study several participants suggested that it would be better 
for each health worker to have a device and carry it around 
the hospital. However, this would substantially increase the 
number of devices and overall cost of deploying the system.  

Analyzing User Errors 
To analyze the errors that participants made when they 
interacted with the system, we manually examined all of the 
captured images and coded any anomalies. User errors fell 
into five categories: (1) no image captured - users collected 
patient data but failed to capture an image of a test; (2) 
captured image is not of a diagnostic test – in these cases 
the image was usually of the desk or stand and probably 
captured accidentally; (3) incorrect test selected – the type 
of test shown in the image is different to the test type 
selected by the user; (4) test placed upside-down – the test 
in the image was placed the wrong way up; and (5) 
unusable image – the captured image is not usable for 
analysis because it is out of focus, overexposed or the 
device was not positioned in the stand correctly.  

Figure 7 shows the percentage of each site’s captured tests 
that contained each type of error. Overall, we identified 
errors in 114 out of 1828 tests (6.2%). The most common 
error was placing the test upside-down (53/1828 or 2.9%), 
followed by incorrectly selecting the test type (31/1828 or 
1.7%). The other error types were more infrequent, with 
users failing to capture an image in 11/1828 or 0.6%, 
capturing an image of something other than a test in 6/1828 
or 0.3%, and placing the device incorrectly in 13/1828 or 
0.7%. Zindi had the lowest error rate at 2.2%, while Tombo 
had the highest error rate at 11.5%. One reason for the high 
error rate at Tombo was due to one participant repeatedly 
placing the device incorrectly in the stand (see Figure 7).  

 
Figure 7: Percentage of each site’s total tests that contained 

each type of user error. 

 
Figure 6: Proportion of each site’s total tests that were 

collected during each week of the study. 
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We plan to address several error types through additions to 
the algorithm. We have already updated the system to make 
it impossible for users to submit data without capturing an 
image. In addition, for tests that contain any identifying 
markings (such as a brand name), it should be relatively 
straightforward to automatically detect the test type and/or 
if the test is upside-down. Finally, additional or repeated 
training sessions would likely also decrease user errors.    

Using the System for Quality Control 
Our findings also show that the system has the potential to 
be a valuable quality control tool. Early in the study, our 
analysis revealed a series of transmitted images in which 
the tests had been incorrectly administered since the test 
strip had a dark red background (see Figure 8). This could 
be the result of health workers either using too much blood 
on the test or of reading the test result too early. In either 
case, the dark red background could easily obscure a weak 
positive result and the test should be discarded. Instead, 
health workers were incorrectly reporting these tests as 
valid, usually negative, diagnoses. This problem occurred in 
a total of 58 tests (3.2%), of which 34 were from Tombo 
clinic. Based on this data, we alerted the relevant supervisor 
who reviewed the test manufacturer's guidelines with the 
health workers. In the future, it will be relatively simple to 
automatically identify tests that have a dark red background 
and instruct the user to discard the test and run another test.  

Q2: Infrastructure Challenges 
Our second research question explores the infrastructure 
challenges faced by participants using the system. None of 
the devices were broken, lost or stolen during the study. In 
addition, participants at each study site were able to keep 
the devices sufficiently charged despite experiencing 
frequent electricity outages, which confirms the benefits of 
deploying portable, battery-charged devices. 

We observed substantial variations in network connectivity 
between the study sites. Mutare and Nyanga had fairly 
reliable 3G connections, Hauna and Zindi had much slower, 
unreliable 2G connections, and although Tombo appeared 
to have a 2G connection, the distance from the clinic to the 
cell tower made transmitting any data extremely 
challenging. Thus, although we initially planned to transmit 
relatively high quality images (roughly 300KB), we decided 
to instead transmit low-quality, compressed images, which 
decreased the amount of data to about 70KB per test.  

Our findings show several interesting differences in data 
transmission between the sites. Figure 9 shows the 
proportion of each site’s total tests that were transmitted 
during each week of the study. Mutare and Nyanga were 

able to reliably transmit data to the server for the duration 
of the study. By contrast, Tombo was unable to transmit 
any data for the first two weeks of the study. To overcome 
this issue, a health worker from Tombo traveled by bus 
every few weeks to a town roughly 40 minutes away to 
transmit data. This behavior is illustrated by the high 
percentages of data transmitted by Tombo in weeks 3 and 6 
of the study (see Figure 9). Zindi was also unable to 
transmit data for the first few weeks of the study. We are 
unsure what caused the changes in connectivity that enabled 
Zindi to transmit large amounts of data in weeks 6-8 of the 
study, although we hypothesize that the network provider 
installed a new cell tower or signal-boosting hardware in 
the area. Finally, health workers at Hauna also struggled 
initially to transmit data. However, after noticing that 
connectivity seemed to be more reliable at night, health 
workers began leaving the devices on to transmit overnight. 
In total, Hauna transmitted 34% of their tests between 10pm 
and 4am, compared to 4% by Mutare, 2% by Tombo and 
0% by Zindi and Nyanga during the same time frame.  

Our findings also show large variations between sites in the 
delays between capturing tests and transmitting them to the 
server. Mutare and Nyanga experienced the smallest delays 
in transmission, with geometric means of 33 seconds (SD = 
23 hrs) and 45 seconds (SD =17 hrs) respectively, compared 
to mean delays of 2 hrs (SD = 129 hrs) at Hauna, 2 hrs (SD 
= 250 hrs) at Zindi and 6 hrs (SD = 140 hrs) at Tombo.  

These findings can inform the design of other mobile health 
systems. Many systems that target low-resource settings 
face challenges relating to network connectivity, and our 
study highlights the importance of supporting asynchronous 
data transmission. Depending on the site, it took anywhere 
from a few seconds to a few weeks for a captured test to be 
transmitted to the server, which also highlights the need for 
mobile systems to process data locally rather than transmit 
it for off-site analysis. Furthermore, several of the strategies 
that our participants developed for transmitting data could 
be generalized to other contexts.  

Q3: Comparison of System and Human Diagnoses 
Our final research question explores the extent to which the 
system’s diagnoses agreed with the health workers’ 
diagnoses. Although the Ministry of Health informed us 
prior to the study that the sites used three brands of malaria 

 
Figure 8: A diagnostic test that contains too much red 

background to yield a valid diagnosis. 

 
Figure 9: Proportion of each site’s total tests that were 

transmitted during each week of the study. 
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tests, we found that in practice all the tests they performed 
were of a single brand (Paracheck Pf®, see Figure 2). Our 
analysis of agreement did not include tests that contained 
user errors (shown in Figure 7). Thus, our dataset consisted 
of 1714 Paracheck tests. As shown in Table 2(A), the 
system and visual diagnoses agreed in 1618 tests (94.3%). 
We used Cohen's Kappa [22] to compute a statistical level 
of agreement between the two diagnoses. The measured 
Cohen's Kappa for these results was 0.84 (95% 
CI:[0.81,0.87]), indicating strong agreement.  

Further analysis revealed several sources of disagreement. 
In some cases, the correct diagnosis was clear and either the 
system or the health worker made an obvious error. 
Unfortunately, we cannot determine if visual errors were 
the result of data entry mistakes or if the participants in fact 
diagnosed a patient incorrectly. In addition, a large portion 
of tests (430 or 25%) contained at least some amount of red 
background coloring, which caused a substantial number of 
the errors made by the system (often these were false 
positive results). As discussed previously, the red coloring 
may result from health workers using too much blood on 
the test or reading the test result too early. In testing the 
system prior to the study, we always used the correct 
amount of blood and waited the right amount of time before 
reading the result. Thus, we did not test the system on 
images with colored backgrounds. Further adjustments to 
the algorithm may be required to deal with this issue. 
Finally, there were tests with equivocal results at the limit 
of detection. In these cases, either the system or the health 
worker reported a positive result. However, since our study 
did not include microscopy-based analysis of blood samples 
by a clinician (considered the gold standard of malaria 
diagnostics), we do not know which diagnosis was correct.  

To further analyze differences between the system and 
visual diagnoses, we created a review diagnosis for each 
test. We asked three researchers to examine each test image 
and provide a diagnosis, and we recorded their majority 
opinion as the review diagnosis. As shown in Table 2(B), 
the review and visual diagnoses matched in 1673 tests 
(97.6%). The measured Cohen's Kappa for these results was 

0.93 (95% CI: [0.91, 0.95]), indicating a stronger agreement 
than observed between the system and visual diagnoses 
(Table 2(A)). Finally, the review and system diagnoses 
agreed in 1657 tests (96.7%) (see Table 2(C)). The 
measured Cohen's Kappa for these results was 0.91 (95% 
CI: [0.88, 0.93]), which is only slightly lower than observed 
between the review and visual diagnoses (Table 2(B)).  

We were interested to see how our results compared to 
those obtained in the clinical study of the FIO mobile 
diagnostic system [19]. Their study was conducted at a 
single site in Tanzania and analyzed SD Bioline malaria 
tests. Our study took place at five sites in Zimbabwe and 
analyzed Paracheck malaria tests. The different test brands 
used somewhat limits the comparisons that can be made 
between the two systems, since variations could be due to 
differences in the tests. In addition, their study was able to 
compare their system’s results to a microscopy-based gold 
standard, finding that the system had an overall accuracy of 
95% (95% CI: [93.7, 96.0]). In our deployment, we were 
not able to obtain additional blood tests for every patient 
and perform microscopy-based analysis. Indeed, one reason 
that rapid diagnostic tests are currently used at our study 
sites is because microscopy-based analysis is infeasible. 
Finally, their study focuses solely on the medical outcomes 
of using the system, whereas our study also discusses 
findings related to health workers’ usage of the system and 
strategies to overcome infrastructural challenges.  

The strength of our findings is highly encouraging and will 
allow us to explore several future deployment scenarios. 
For example, if health workers are well trained, the system 
could simply focus quality control efforts on tests in which 
the human diagnosis differs from the system diagnosis. 
Alternatively, in situations where health workers are less 
experienced, the system could provide a second opinion and 
instruct health workers to run another test if there is 
disagreement. Finally, in situations where health workers 
are untrained, the system could perform the diagnosis and 
inform the health worker of the outcome. 

Deployment Costs 
The cost of deploying and sustaining a new technology is 
an important consideration in low-resource settings. The 
XCover devices that we deployed cost roughly USD $250 
each in Zimbabwe. The devices were loaded with 2GB SD 
cards that cost $5 each and 300MB data bundles that cost 
$15 each. The plastic stands to hold the devices cost $10 
each.  Transmitting a single test required roughly 70KB of 
data, which equates to a transmission cost of 0.35 cents per 
test. Storing data from all 15 devices in an online database 
cost less than $10 per month. Health workers were trained 
during regular work hours and did not receive additional 
compensation for participating in the study. Thus, the entire 
deployment cost approximately $4200, or $280 per device. 
In fact, the travel, transport and lodging costs for four 
researchers and two accompanying ministry of health staff 
were 4 to 5 times more than the costs of the deployment.  

Table 2: Summary of agreement between (A) the system and 
visual diagnoses, (B) the review and visual diagnoses and (C) 

the review and system diagnoses. 

 
A System 

 
  

Positive Negative Kappa (95% CI) 
Visual Positive 345 26 

 
 

Negative 70 1273 0.84 (0.81-0.87) 
     

 
B Review 

 
  

Positive Negative Kappa (95% CI) 
Visual Positive 352 19 

 
 

Negative 22 1321 0.93 (0.91-0.95) 
     

 
C Review 

 
  

Positive Negative Kappa (95% CI) 
System Positive 367 50 

 
 

Negative 7 1290 0.91 (0.88-0.93) 
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Future Work and Limitations  
Our study has several limitations that provide opportunities 
for future work. We only analyze tests for malaria and 
would like to field test the system with tests for a variety of 
other diseases. In addition, our participants were well 
trained and we want to explore the potential for the system 
to aid health workers that have less medical background. 
Our system also uses a stand to hold the device in position 
above the test. Systems that require users to capture images 
using a handheld device may be more convenient to use, 
but will likely experience additional image capture issues. 
Finally, we focus on a camera-based mobile system. 
Although some of our findings apply to sensor-based 
systems in general (such as data transmission issues), future 
research will likely expose additional challenges for 
systems that use external sensors attached to the device.   

CONCLUSION 
The availability of mobile devices in low-resource settings 
has led to the creation of mobile health systems that target 
disadvantaged populations. This paper presents findings 
from an eight-week field deployment of a mobile system 
that captures and analyzes rapid diagnostic tests. Health 
workers in Zimbabwe used the system for the duration of 
the study to analyze thousands of tests for malaria. In 
addition, they employed a variety of strategies to overcome 
poor network connectivity and transmit test data to a server. 
Finally, the system’s computed diagnoses strongly agreed 
with the visual diagnoses provided by trained health 
workers. Taken together, our findings show the potential for 
mobile systems to aid the delivery of healthcare in low-
resource settings and provide valuable insights for HCI 
researchers working in similar environments. 
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