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Abstract
Differences in HIV-1 gp120 sequence variation were examined in North American volunteers who
became infected during a phase III vaccine trial using the rgp120 vaccine. Molecular adaptation of
the virus in vaccine and placebo recipients from different ethnic subgroups was compared by
estimating the dN/dS ratios in viruses sampled from each individual using three different methods.
ANOVA analyses detected significant differences in dN/dS ratios among races (P < 0.02). gp120
sequences from the black individuals showed higher mean dN/dS ratios for all estimators (1.24–1.45)
than in other races (0.66–1.35), and several pairwise comparisons involving blacks remained
significant (P < 0.05) after correction for multiple tests. In addition, black-placebo individuals
showed significantly (P < 0.02) higher mean dN/dS ratios (1.3–1.66) than placebo individuals from
the other races (0.65–1.56). These results suggest intrinsic differences among races in immune
response and highlight the need for including multiple ethnicities in the design of future HIV-1
vaccine studies and trials.

Findings
More than 33 million people are currently infected with
HIV-1, resulting in 2–3 million deaths every year. Natural
immunity to the virus is virtually nonexistent; hence, the
creation of a vaccine to combat this global pandemic is an
international public-health priority [1,2]. In 2003, the
results were released for a phase III HIV-1 vaccine efficacy
trial conducted in North America and The Netherlands
(VAX004) [3]. This study tested the efficacy of bivalent
vaccines containing recombinant HIV-1 envelope glyco-
protein 120 (rgp120) antigens, the major antigen on the

surface of the virus [4]. Overall, the vaccine candidate did
not seem to reduce the incidence of HIV-1 infection, but
an interesting trend was noted in the analysis of the differ-
ent self-described ethnic groups [white (non-Hispanic),
blacks, Hispanic, Asian, and "others"]. When only the
non-white volunteers (17% of the total study population)
were considered, the vaccine seemed to confer a slight
benefit (P = 0.012). After adjustment for multiple tests,
this difference was not significant (P = 0.13) [3]. Despite
a lack of statistical support, this is not a trivial result. If this
trend was to be confirmed, it would imply that non-
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whites developed protective immunity to HIV-1 or, even
more important, that rgp120 immunogens could protect
against HIV infection under certain circumstances. Here
we explored this possibility further.

HIV-1 evolution is driven, to a significant extent, by the
immune response. If viruses isolated from non-white
patients are in fact under a stronger selection pressure
either because of genetic differences in the magnitude,
specificity, or potency of the natural immune response, or
because of differences in factors affecting virus replication,
we should expect higher ratios of nonsynonymous
(amino acid changing) to synonymous nucleotide substi-
tutions (dN/dS) [5-8] than in viral samples isolated from
vaccinated and placebo (non-vaccinated) white individu-
als.

To test whether levels of selection were significantly differ-
ent between vaccinated and placebo individuals in differ-
ent races, we analyzed 3 clones per individual from 345
infected North Americans from the VAX004 study (Table
1; data available at http://www.gsid.org). Full-length HIV-
1 subtype B gp120 sequences were amplified as described
in Gilbert et al. [9]. Since, as expected, viruses isolated
from individuals from the same race did not form mono-
phyletic groups [10], viral samples for each patient were
analyzed separately. In each case, individual clones were
aligned in MAFFT v5.7 [11], and dN/dS ratios were esti-
mated using Nei and Gojobori's method [6] in SNAP [12],
model M0 (one-ratio) in PAML v3.14 [13], and Fixed
Effects Likelihood (FEL) with tree branch correction in
HYPHY [14]. In the latter case, we took recombination
into account by first detecting recombination breakpoints
with GARD [15], and then estimating the dN/dS ratios
independently for each fragment.

Mean dN/dS ratios across races and treatments were com-
pared using ANOVA, linear models (lm) and pairwise t-
tests. Because treating all non-whites as a single unit is
unrealistic considering their own genetic differences [3],
we tested for differences in selection pressure on a race-by-
race basis. Multiple significance in the pairwise t-tests was
corrected using the Benjamini and Hochberg's procedure
[16].

The estimates of dN/dS obtained with SNAP, PAML and
HYPHY were all significantly correlated among the differ-
ent estimators used (correlation coefficient > 0.85; P <
0.001). Importantly, the mean dN/dS ratios varied across
races (Table 1), and these differences were globally signif-
icant (ANOVA;P < 0.02) for SNAP and PAML estimates.
Blacks (vaccinees and placebo combined) showed higher
dN/dS ratios for all the estimators than individuals from
other ethnicities (Table 1). Significant differences (pair-
wise t-tests; P < 0.05) between black and white, Hispanic
and "others" viral samples were observed for all the esti-
mators before corrections, but only the comparisons
involving SNAP and PAML estimates remained significant
after the Benjamini and Hochberg's adjustment (Table 2).
The higher dN/dS ratios observed for blacks suggest that the
rate of virus evolution is greater in this group than in other
volunteers. Differences in immune response to HIV-1
infection have been pointed out by the rgp120 HIV Vac-
cine Study Group [3] as one of the potential factors to
explain vaccine efficiency differences between white and
non-white volunteers in the VAX004 trial. Ethnic differ-
ences in immune response have been also reported for
other viruses such as the hepatitis C virus [17].

Does the greater virus adaptive variation presumed in
black participants reflect genetic differences in the intrin-
sic (no-preconditioned) immune response to HIV-1, or is
it a consequence of the conditioned immune response
induced by vaccination with rgp120? Comparison of vac-
cine and placebo recipients showed different results based
on the dN/dS estimators used. No significant differences
were observed among vaccinees, but significant differ-
ences (ANOVA; P = 0.025) in SNAP dN/dS ratios were
detected among placebo individuals. Moreover, black-
placebo patients showed significantly (lm coefficients; P <
0.02) higher mean dN/dS ratios (1.3, 1.38 and 1.66, for
SNAP, PAML and HYPHY, respectively) than the other
races (0.65–1.01, 0.84–1.14 and 0.73–1.56, respectively).
These results might indicate that natural differences in the
immune response may have increased viral rgp120 adap-
tation in blacks.

In North America, blacks correspond to 42% of all newly
diagnosed HIV/AIDS cases, while white (non-Hispanic)
and Hispanic individuals represent approximately 40%
and 17%, respectively [18]. If more data including both

Table 1: Mean dN/dS estimates across patients in PAML, SNAP and HYPHY. 

White (291) Hispanic (22) Black (12) Asian (5) Other (15)

SNAP 0.709 0.750 1.240 0.818 0.659
PAML 0.839 0.826 1.411 1.346 0.751
HYPHY 0.949 0.729 1.453 0.720 1.202

Individuals analyzed are indicated between parentheses.
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placebo and vaccinated recipients confirm that selection
pressure differs between viruses infecting these three races,
deciphering the genetic determinants of these differences
should become a public-health priority. Indeed, our
results highlight the need for selecting a broader represen-
tation of volunteers, based on ethnicity, in the design of
future HIV-1 vaccine studies and trials [19].
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Table 2: Statistically significant comparisons of dN/dS estimates among races and race-treatments. 

Race Race by treatment

Method ANOVA Corrected pairwise t-tests ANOVA lm coefficient

SNAP (0.011) black vs hispanic (0.020)
black vs other (0.013)
black vs white (0.004)

(0.025) black placebo (0.001)

PAML (0.019) black vs hispanic (0.047)
black vs other (0.047)
black vs white (0.033)

black placebo (0.016)

HYPHY black placebo (0.015)

Values in parentheses are P-values.
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